
J. FZuid Illeeh. (1964), vot. 20, part 1, pp. 81-94 

Printed in Great Britain 

On the stability of viscous flow between 
rotating cylinders 

Part 1. Asymptotic analysis 

By R. L. DUTY? AND W .  H. REID$ 
Brown University, Providence, Rhode Island 

(Received 10 February 1964) 

The stability of Couette flow is discussed in the case in which the cylinders rotate 
in opposite directions by an asymptotic method in which the Taylor number is 
treated as a large parameter. On assuming the principle of exchange of stabilities 
to  hold, the problem is then governed by a sixth-order differential equation with 
a simple turning point. It is shown how the solutions of this equation can be 
represented asymptotically in terms of the solutions of the comparison equation 
yvi = xy. The solutions of this comparison equation have recently been tabulated 
and we thus have an explicit representation of the solution of the stability 
problem in terms of tabulated functions. Detailed results for the critical Taylor 
number and wave-number a t  the onset of instability and the associated eigen- 
functions are given for the limiting casep + - a, wherep = Q2/Ql, and a, and Q2 

are the angular velocities of the inner and outer cylinders respectively. In  this 
limiting case it is found that there exists an infinite number of cells between the 
cylinders, but that the amplitude of the secondary motion in all but the inner- 
most cell is small. 

1. Introduction 
The problem of the stability of viscous flow between rotating cylinders was 

first successfully treated both theoretically and experimentally by G. I. Taylor 
in 1923, and it has since been considered by a number of other workers. One of 
the chief difficulties of the problem arises from the fact that the character of the 
eigenvalue problem to which one is led depends very markedly on whether the 
cylinders rotate in the same or in opposite directions, i.e. it  depends on the sign 
of Q2/Q2, = ,LL say, where Ql and Q2 are the angular velocities of the inner and 
outer cylinders respectively. In recent years adequate methods have been 
developed for dealing with the problem when p is positive, or when p is only 
moderately negative. For large negative values of p, however, these methods 
become inadequate, and an essentially different approach must be adopted. The 
purpose of the present paper then is to describe an asymptotic method which is 
especially suited for dealing with the case when ,L& < 0. 
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2. The governing equations 
Let (r ,  $, z) be cylindrical co-ordinates with the axis of the cylinders along the 

z-axis, and let R, and R, denote the radii of the inner and outer cylinders 
respectively. The equations of motion then allow the stationary solution 

Q(r)  = A + B/r2 (1) 

for the angular velocity a t  a distance r from the axis of rotation. The constants A 
and B are given by 

A = - Q ~ ( ~ 2 - p ) / ( l - ~ 2 )  and B = Q l R ~ ( 1 - p ) / ( l - q 2 ) ,  ( 2 )  

where 7 = RJR,. 

mean radius, i.e. when 
When the difference in radii of the two cylinders is small compared with their 

d = R2- R, < +(R,+ Rl), (3) 

the angular velocity distribution can be approximated by 

where 

When this approximation is not made, the resulting eigenvalue problem is of 
considerably greater difficulty and we have not attempted to extend the present 
method of solution to that case. Among the work dealing with the finite-gap 
problem, however, we may mentioned the papers by Chandrasekhar (1958) and 
Chandrasekhar & EIbert (1962) which deal with the particular case 7 = +, the 
papers by Miss Steinman (1956) and Witting (1958) which are based on an 
expansion of the solution in powers of dlR,, and the papers by Kirchgassner (1961) 
and Walowit, Tsao & Di Prima (1964) in which the only essential limitation is 
that -p is not too large. 

If the velocity distribution given by equation (4) is subjected to a rotationally 
symmetric perturbation whose t and z dependence is of the form 

exp (pt  + ikz), (6) 

then the linearized equation for w, the amplitude of the azimuthal component of 
the perturbation velocity, can be written in the non-dimensional form (cf. Lin 
1955, p. 18)  

( 7 )  

where the Taylor number and the amplification factor CT are given by 

T = - (4AQ1/v2) d4 and CT = p / (  - 4AQl)fr. (8) 

( 0 2  - a2- fl JT)2 ( 0 2  - a,) w = - a2T[ 1 - (1  - p) 61 w, 

In  equation (7), D stands for dldz  and a = kd.  Within the framework of the 
small-gap approximation (3) the parameters defined by (8) can be written in the 
alternative forms 
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It may be noted that in the derivation of equation (7), the amplitude of the radial 
component of the perturbation velocity, u, is found to be proportional to 
(D2 - a2 - u 2/T) v. Equation (7 )  must be solved subject to the boundary conditions 

v = (D2-a2--u J T ) v  = D(D2-a2-uJT)v  = 0 (10) 

a t [ = O a n d c =  1. 
For assigned values of p, the eigenvalue problem defined by the equation (7 )  

and the boundary conditions (10) leads to a characteristic equation of the form 

P(a ,  T ,  u) = 0. (11) 

If we let CT = u,. + iui, then the condition for neutral stability is that u,. = 0 and 
this condition leads to a relationship between a and T.  The minimum value of 
T obtained from this relation, together with the corresponding values of a and cri, 

define the conditions under which instability will first occur. When ui vanishes at  
the onset of instability, the ‘principle of exchange of stabilities’ is said to hold, 
and the resulting neutral mode is in the form of a steady secondary motion. If C T ~  
does not vanish, however, then we are dealing with the case of overstability and 
the resulting neutral mode has an oscillatory character. 

From an analysis of the inviscid form of equation (7)) obtained by formally 
allowing T to become infinite in that equation, it has been suggested (Reid 1960) 
that while the principle of exchange of stabilities may hold when the cylinders 
rotate in the same direction, overstable modes may also appear when they rotate 
in opposite directions. In  the present paper we will treat only the convective 
modes of instability, i.e. we will continue to assume that the principle of exchange 
of stabilities is valid even for negative values of p. It would appear, however, 
that the method to be described can be adapted to the study of the overstable 
modes as well. 

On the assumption then that u = 0 describes the state of marginal stability, 
equation (7) becomes 

(12) 

with the boundary conditions 

( 0 2  - a73 v = - a2T[ 1 - ( 1 - p) 61 v. 

v = (02-a2)v = 0(02-a2)v  = 0 (13) 

at = 0 and [ = 1. When the cylinders rotate in the same direction, the coef- 
ficient of v on the right-hand side of equation (7) does not change sign, and under 
these circumstances one can, to a good approximation, simply replace this 
coefficient by its average value to obtain 

T, M 1708/&(1+p) and a, % 3-13. (14) 

Strictly speaking, these results are only valid in the limit p --f 1, but the error is 
of the order of e2, where 

e = 2(1 - P ) / ( l  +PI, (15) 

with a coefficient that is numerically very small (cf. Chandrasekhar 1961). The 
results (14) thus provide, as was first noted by Taylor, a good approximation for 
0 < p < 1. Since the problem is not self-adjoint, however, it  may also possess 

6-2 
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complex eigenvalues for p < 1. This can also be seen from the fact that the 
expansion of the solution of equation (12) in powers of e would appear to be 
asymptotic rather than convergent and thus cannot prove that all of the eigen- 
values are positive or even real for any B > 0. 

When the cylinders rotate in opposite directions, a transition point occurs in 
equation (12) a t  cc = I / (  1 - p) and, on the assumption that real eigenvalues exist, 
the equation would then admit solutions for both positive and negative values 
of T .  Only positive values of T are, of course, physically relevant. On Rayleigh’s 
criterion it is only the fluid lying between the inner cylinder and the nodal point 
that is dynamically unstable, and this result suggests that when the cylinders 
rotate in opposite directions the relevant length scale is no longer the gap width, 
but rather the distance from the inner cylinder to the nodal point. For p < 0, it is 
convenient, therefore, to renormalize the problem by writing 

z = (l-P)!L (16) 
so that the inner cylinder is located at z = 0, and the nodal point is fixed at z = 1. 
The wave-number and the Taylor number can also be conveniently renormalized 
by letting a = a/(l -p)  and 7 = T/(1 -,M)~. 

Equation (12) then becomes 
(17) 

(18) ( 0 2  - a2)3 21 = -a%( 1 - 2) 21, 

where D now stands for dldz ,  and the boundary conditions (13) become 

3. Discussion of previous work 
One of the most powerful methods for dealing with the eigenvalue problem 

defined by equations (12) and (13) is the Fourier-expansion technique developed 
by Chandrasekhar (1954, 1961). This method has proved to be entirely satis- 
factory for positive or for moderately negative values of p. But for values of ,u 
more negative than about - 3, the method becomes increasingly difficult to  
apply. This difficulty can be traced to the fact that as p takes on large negative 
values the required eigenfunction has a highly damped oscillatory character 
(even for the lowest mode) over a large part of the interval and, as a result, an 
increasingly large number of terms in the Fourier expansion is required to 
represent it adequately. Fortunately, the values of 7, and E, become nearly 
independent of p as soon as p becomes more negative than about - 2. Chandra- 
sekhar was able, therefore, to estimate the limiting values of 7, and a, as p --f - co, 
with the results 

7,-+ll80 and a,-+2.03 as p--f--co. (20) 

The problem has also been discussed by Di Prima (1955) using a Galerkin 
method. In  his analysis he employed equations equivalent to (18) and (19) and, 
for p -+ - co, obtained the results 

7c--f 1075 and a,+ 2.125 as f 6 - f  -a. (21) 



The stability of Jioui between rotating cylinders. Part I 85 

While the trial functions used in this calculation lead to adequate estimates for 
r, and c(., as p -+ - CQ, they do not have the correct behaviour for large values of 
z and hence cannot provide an adequate approximation to the corresponding 
eigenfunctions. 

An asymptotic method of integrating equation (12) has been described by 
Meksyn (1946, 1961) on the assumption that the wave-number a is a large 
parameter.? On the further assumption that Tla4 is of order unity, he obtained 
WKB solutions of the form 

(23 )  

where 

and V ( 6 )  is a root of the equation f ( V ,  6) = 0. The zeros of af/aV are given by the 
roots of the equation 

and it is seen that in the representation ( 2 2 )  there are in general two critical 
points located at 

When the cylinders rotate in opposite directions both of these critical points lie 
in the interval 0 < 6 < 1, and it would, therefore, be necessary to obtain the 
continuation of the solutions through both of them. Since these critical points 
are close together, Meksyn assumes that they coincide, and then chooses to deal 
with the single critical point a t  C/& = 1 - a4/T. His analysis leads to the results 

p ( V ,  6) = ( v2 - + TP - (1 --PI 61/a4, (23) 

(24) 

6/cc = 1 and <I<, = 1 -a4/T. (35) 

6V(V2- 1)2 = 0, 

rc+ 1132 and a,+2 as p- f -CQ, (26) 
but i t  does not lead to a convenient representation for the corresponding 
eigenfunctions. / 

In the definition of the Taylor number T there occurs a factor 1/v2 and, as in 
other problems of hydrodynamic stability, this fact suggests that T (or r )  be 
considered a large parameter. On the assumption, therefore, that 01. is of order 
unity and that T is large, it  will be shown that the solution of the present problem 
can be represented asymptotically in terms of the solutions of the comparison 
equation y"' = xy. (27) 

This method avoids most of the difficulties associated with Meksyn's approach 
and, in addition, does provide a convenient representation for the eigenfunctions. 

4. The method of solution 
The equation (18) with which we must deal is a linear sixth-order equation 

with a simple turning point a t  z = 1. Equations of this type have been discussed 
by Lenger (1960), and while the method to be presented here has many similarities 
with Langer's method, it differs from his in some details. Consider firit the 
change of variable 

(28) x = h(z- 1). 

t The quantity h which appears in Meksyn's analysis is related to  the parameters defined 
here by the relation ?Ld = (1 - y )  T/a4. 
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If we identify h with (a%)$, then equation (18) becomes 

R. L. Duty and W .  H .  Reid 

(0'- a2/h2)3 v = XU, 

where D now stands for d / d x ,  and the boundary conditions (19) become 

w = (0'- " ' /A2) v = D(D2 - "'/A') v = 0 

a t x = - h a n d x = - h , u .  
The general solution of equation (29) can be written in the usual form 

6 

i=l 
V(X) = C i V , ( Z ) ,  

where {vi(x)} is a fundamental set of solutions of equation (29). The boundary 
conditions (30) then lead to a set of six homogeneous equations in the C's, and the 
requirement that they not vanish identically then leads to the characteristic 
equation 

where i = 1,2, ..., 6. 

vi( - 

(D2 - a2/A2) ~ i (  - A)  
D(O2 - a2/A2) ~ i (  - A )  

Vi(  - hP) 
( Da - a2/h2) v,( - h , ~ )  

D(D' - "'/A') v%( - h , ~ )  

= 0, 

From the form of equation (29) it  is clear that it is the parameter h = (a%)+ 
that must be considered large rather than r itself. The quantity (a27)+ thus plays 
a role in the present problem analogous to the quantity (aR)f in the asymptotic 
theory of the Orr-Sommerfeld equation. From the values of CL., and T~ quoted in 
the previous section, it follows that A, E 3.4 for ,U -+ -m. While this value of 
h might appear to be somewhat small, it will be shown that it is in fact sufficiently 
large for the present purposes. 

On the assumption then that his a large parameter, we will now derive a formal 
asymptotic solution of equation (29) in the form 

where i = 1,2, ..., 6 .  On substituting this representation for vi(x) into equation 
(29) and requiring the resulting equation to be satisfied to various orders in l /h2,  
we obtain the sequence of equations 

( 0 6  - x) V p  = 0, 

( 0 6  - x) $' = 3a204vp1, 

( 0 6  - x) q,(?) = 3a204vW - 3a4D'Vp, 

( 0 6  - X) 4 2 % )  = 3 ~ 2 0 4  vui (2n-2) - 3 a 4 0 2  11!,2n-4) + a62.'!2n--6). 

(34a) 

(34 b )  

(344 

( 3 4 4  

y"' = xy, (35) 

and, for n 2 3, 

Equation (34a), which is of the form 
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is the comparison equation for the present theory. This equation displays the 
same essential turning-point behaviour as the full equation and it thus plays the 
same role in the present problem as Airy's equation does in the theory of second- 
order equations with a simple turning point. 

It is useful to note that, since an equation of the form 

( 0 6  - z)f = D m g ,  (36a) 

where g satisfies the equation (DO - x) g = 0, has a particular solution given by 

f = (m,+ l)- 'P+lg,  (366) 

the inhomogeneous equations (34 b) through (344 can be integrated explicitly 
in terms of the solutions of equation (34a) and their derivatives. In  solving 
equations (34 b) through (344  we will identify only the particular solutions of 
the equations with the v ~ , ~ ) ( x ) ,  the homogeneous part of the solutions being 
entirely represented by the leading term via)(,). This procedure is necessary (see 
5 6) in order that the formal asymptotic solutions given by equation (33) should 
be asymptotic to the true solutions of equation (29). 

The comparison equation (35) fortunately contains no parameters of the 
problem. Once a suitable set of solutions have been defined and tabulated, 
therefore, the solution of this problem (and of related problems having the same 
comparison equation) can then be carried out explicitly. In  attempting to treat 
the present problem for large negative values of p, it is clearly desirable, in view 
of the boundary conditions (30), to define the solutions of equation (35) in such 
a manner that three of them tend to zero for large positive values of x. A set of 
solutions having this property have been defined recently (Duty & Reid 1963). 
The required set of solutions, which we will denote by A,(.) and B,(z) (i = 1,2,3)? 
can be obtained by the method of Laplace contour integrals, in the manner 
described by Miller (1946) for the second-order Airy equation. For later reference, 
we may note that for large positive values of x, these solutions have the asymptotic 
behaviours A, - g(3n)tz-i'sexp (-+x:), 

A, N (3n)-g x-i%exp( -$xz)sin($2/3z%+Qn-), 
A, N (3n)3z-i%exp( - $ x % ) c o s ( $ ~ / ~ ~ ~ + ~ ~ T ) ,  

B, - (3n)d z-A- exp ( + @f), 

B, - (3n)-1z-~-exp(++z:)sin($2/3zI+$.n), 
B, - (37r)-fz-~exp(++z%)cos($2/3x~+$.n). 

A preliminary tabulation of these solutions (together with their first five deri- 
vatives), adequate for the present purposes, has been given by Hughes & Reid 
(1961) for x = - g(O.1) + 6. 

We have thus obtained an explicit asymptotic representation of the solutions 
appearing in the characteristic equation in terms of tabulated functions. If we 
now truncate the expansions (33) at n = N ,  then the resulting solution of the 
characteristic equation yields an Nth approximation to the curve of neutral 
stability. For finite negative values of ,u7 the required calculations are clearly 
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somewhat lengthy; for ,u + - 03, however, the characteristic determinant is of 
only the third-order and detailed results can be obtained more easily. Some 
results for this limiting case will be given in the following section. 

Ai( - A )  
A;(--A) 
A?( - A )  

= 0, (39) 
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In  order to determine the corresponding eigenfunction, v(x), we can use either 
the approximate values given by (41) or the exact values given by (42). The 
difference between the eigenfunctions in the two cases is only detectable at 
large values of x. Since the exact values are available, i t  would seem preferable 
to use them. The expansion coefficients are then found to be in the ratio 

Cl: C2:C3 = 1 : 0.986487: 0.0202023. (43) 
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FIGURE 1.  The various approximations to the curve of neutral stability for the first mode. 

It is convenient to normalize the amplitude of the radial component of the 
perturbation velocity? to unity in order that the maximum value of the stream 
function occurring in the cell pattern will also be normalized to unity. 

From figures 2 and 3 i t  is seen that, as might be expected from Rayleigh’s 
criterion, the amplitude of the secondary motion is largest in the cell which borders 
the inner cylinder; this effect is also seen in the cell pattern shown in figure 4. 
It is also apparent that the amplitude of the secondary motion is strongly damped 
as one proceeds from the inner towards the outer cylinder. Since the representa- 
tion (33) for us(.) is derived for h + a3 for a fixed value of x, it  does not provide 
a satisfactory representation of the eigenfunction for a fixed value of h as x -+ + 00. 
This difficulty can be overcome by employing the contour integral representation 
of the solutions of equation (29), and this alternative representation is derived 
in the following section. From this representation for v(x) it is found that as 
,u --f - co, the number of cells occurring between the cylinders becomes infinite, 
while the distance between the cell boundaries decreases like x-* as x -+ + 00. 

t This is related to the amplitude of the azimuthal component of the perturbation 
velocity by the equation u(z) = (hZD2-dZ) v(2). 
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-02 -  

FIGURE 2. The amplitude of the radial eigenfunction u at the onset of instability 
for p = - co. The nodal surface is located at z = 1 ; T,  = 1178.6, ac = 2.0337. 
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FIGURE 3. The amplitude of the azimuthal eigenfunction o a t  the onset of instability 
for ,u = - co. 
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FIGURE 4. The cell pattern a t  the onset of instability for p = - co. $ = u(z)eos (a&l). 
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An attempt was also made to obtain approximations to the neutral curve for 
the second mode of instabiIi6y) and the results for this case are shown in figure 5. 
It is seen that the representation (33), for a given order in l /A2,  does not allow 
as good an approximation to the neutral curve for the second mode as it does for 
for the first mode. This behaviour may be traced to the fact that for the second 

I I 1 1 
3.0 3.5 40 4.5 5.0 

231 

01 

FIGURE 5 .  The various approximations to  the curve of neutral stability 
for the second mode. 

mode the ratio of a/h is slightly larger than it is for the first mode. From the curve 
for N = 4, we obtain the critical values 

7, = 2.35 x lo4, a, = 4.01 and A, = 6.26. (44) 

These values are, of course, somewhat crude, but they do agree surprisingly well 
with the ‘exact ’ values 

r, = 2 . 2 9 ~  lo4, a, = 4.18 and A, = 6.31 (45) 

obtained by Harris & Reid (1964). 

6. The Laplace-integral representation 
In order to obtain an adequate representation for v(x) for large values of x, 

it is necessary to consider the Laplace contour integral solutions of equation (29). 
These solutions can also be used to show that the formal expansions (33) are in 
fact asymptotic to the true solutions of equation (29). 
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By the method of Laplace integrals (cf. Coddington & Levinson 1955) we find 
the contour integral solutions of equation ( 2 9 )  are of the form 

exp [ f ( t ) l  G(x,  t )  dt, (46) 

where (47) 

and G(x, t )  = exp (xt - t7/7). (48) 

The paths P, in the complex t-plane are to be chosen so that t7/7 has an infinitely 
positive real part at their end-points. It is possible, after investigating various 
combinations of paths Pi, to specify those combinations which allow the boundary 
conditions (30) at x = + co to be satisfied, and i t  can then be shown by the method 
of steepest descents (cf. Jeffreys & Jeffreys 1956) that the solutions vd(x) for large 
positive values of x have the same ultimate behaviour as the functions denoted 
by A,(x). The asymptotic behaviour of v(x)  as x + +a is therefore given by the 
expression? 

- ( 4 7 , ) f  ~ ( 2 )  N 4*796I[A1(x) + 0%649A2(x) + 0*020202A3(x)]. (49) 

It is seen from equation (49) that, since A,(x) is more strongly damped than 
either A,(x) or A3(x) ,  the eigenfunction v(x) closely resembles A2(r) for large 
positive values of x ,  with modifications only near the zeros of A2(x) .  

Consider now the contour integral solutions of equation (34a) which are of 
the form 

vc,”(x) = Jlp* G(x ,  t )  dt, (50)  

where G(x, t )  is defined by equation (48) )  and the paths 4 can be chosen to be 
identical with those specified for the solutions of equation (46). If we now expand 
the quantity exp [ f  (t)] which occurs in equation (46) in a Maclaurin series, and 
then integrate the resulting expression term by term, we obtain 

In order to compare the representation (51) for vi(x) with the one given in 5 4 ,  it  is  
only necessary to substitute the explicit form forf(t) into equation (51)) and then 
to order the terms in ascending powers of l/h2. For example, the first term of 
equation (51) is simply vio)(x), while the coefficient of l /h2, which arises from the 
second term of equation (51), leads to an expression of the form 

But this expression may be interpreted, in view of the relation (50)) as 

3a2 d5v:o’ -__ 
5h2 dx5 ’ 

which is, of course, identical with the term v\2)/h2 given by equation (34b) .  

(53) 

t The factor (47,)) has been introduced simply to obtain a convenient sealing for v(z). 
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7. Concluding remarks 
The asymptotic method of solution described in this paper depends, for its 

simplicity, largely on the fact that we have made the small-gap approximation 
and have assumed the principle of exchange of stabilities to be valid. More 
generally, if 7 < 1 but ,u is large and negative, the small-gap approximation can 
still be applied to the unstable layer of fluid adjacent to the inner cylinder but not 
to  the outer, stable layer of fluid in which the effects of curvature remain im- 
portant. If the principle of exchange of stabilities is not assumed to hold, then 
one obtains a ‘reduced equation’ of the second-order that can be solved explicitly 
in terms of Airy functions (Reid 1960). These inviscid solutions must differ 
appreciably from the solutions of the full equation not only near the turning 
point but also in the outer, stable portion of the flow where they in fact decay 
more rapidly than the viscous solutions. The analysis of equation (7) for possible 
overstable modes of instability is likely, therefore, to be much more intricate, 
and to require a knowledge of the solutions of the comparison equation yvi = xy 
for complex values of x. 

There would also appear to be a number of aspects of the problem which 
deserve further attention. For example, when the cylinders rotate in the same 
direction, it would appear that the relevant comparison equation must be 
yvi = - y and that an analysis of the problem for 0 < ,u < 1 along the present 
lines would provide a deeper understanding of the results quoted in section 1. 

Another question that emerges directly from the present work concerns the 
behaviour of T as u -+ co. For ,u = + 1, it is known (from the exact solution of the 
BBnard problem) that T N a4 as a + 00, and it would be interesting to know if a 
relation of the form T N C(p) a4 continues to hold for p < + 1. Neither Meksyn’s 
work nor the present work can adequately answer this question. 

This work was supported by the Fluid Dynamics Branch of the Office of Naval 
Research under Contract Nonr 562(07) with Brown University. 
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